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Bacterial diversity in unimproved and improved grassland soils was assessed by PCR amplification of
bacterial 16S ribosomal DNA (rDNA) from directly extracted soil DNA, followed by sequencing of �45 16S
rDNA clones from each of three unimproved and three improved grassland samples (A. E. McCaig, L. A.
Glover, and J. I. Prosser, Appl. Environ. Microbiol. 65:1721–1730, 1999) or by denaturing gradient gel
electrophoresis (DGGE) of total amplification products. Semi-improved grassland soils were analyzed only by
DGGE. No differences between communities were detected by calculation of diversity indices and similarity
coefficients for clone data (possibly due to poor coverage). Differences were not observed between the diversities
of individual unimproved and improved grassland DGGE profiles, although considerable spatial variation was
observed among triplicate samples. Semi-improved grassland samples, however, were less diverse than the
other grassland samples and had much lower within-group variation. DGGE banding profiles obtained from
triplicate samples pooled prior to analysis indicated that there was less evenness in improved soils, suggesting
that selection for specific bacterial groups occurred. Analysis of DGGE profiles by canonical variate analysis
but not by principal-coordinate analysis, using unweighted data (considering only the presence and absence of
bands) and weighted data (considering the relative intensity of each band), demonstrated that there were clear
differences between grasslands, and the results were not affected by weighting of data. This study demonstrated
that quantitative analysis of data obtained by community profiling methods, such as DGGE, can reveal
differences between complex microbial communities.

Bacteria play a central role in the rhizosphere, which is a
complex and dynamic environment that varies temporally, spa-
tially, and with different agricultural practices that are likely to
influence the bacterial community. However, the relationships
among nutrient cycling, plant physiology, plant diversity, and
bacterial community structure are not well understood. Mo-
lecular analysis of bacterial diversity in terrestrial ecosystems
(4, 12, 27, 39) most frequently involves retrieval of 16S rRNA
gene sequences by PCR amplification of extracted and purified
nucleic acids, using broad-range or group-specific primer sets,
along with subsequent analysis by cloning and characterization
of clones by sequencing (3, 17, 22) or restriction fragment
length polymorphism analysis (15, 21, 39). Alternatively, fin-
gerprinting of total PCR products may be carried out by using,
for example, amplified ribosomal DNA (rDNA) restriction
analysis (28, 34), length heterogeneity PCR (30), single-strand
conformation polymorphism (19, 31), and terminal restriction
fragment length polymorphism (20, 37). The most frequently
used community fingerprinting methods are denaturing gradi-
ent gel electrophoresis (DGGE) and temperature gradient gel
electrophoresis (11, 13, 16, 26), which separate sequences on
the basis of differences in denaturing properties, and hence

migration distances, in chemical and temperature gradients,
respectively. Fingerprinting methods allow more rapid com-
parison of samples and are generally used to detect shifts in
populations over time and/or under different environmental
conditions.

The cloning approach has provided lists of sequence per-
centages or restriction fragment length polymorphism classes,
along with their relative amounts in libraries. Quantification of
data recovered in rDNA libraries is limited by the restricted
number of clones that can feasibly be screened, but data have
been used to calculate indices of diversity (21, 22). In contrast,
fingerprinting techniques are more amenable to quantification;
for example, they can be used to compare the presence and
relative intensities of individual bands in DGGE gels and to
calculate changes in their relative intensities (24, 36), to cal-
culate diversity indices (9, 14), and to perform cluster analysis
of banding patterns (8, 10). With both of these approaches,
however, care must be taken in relating findings to in situ
community structure, as accurate quantification may be im-
paired by biases introduced during DNA extraction, PCR, or
cloning.

Bacterial populations in grassland soils at Sourhope, Scot-
land, have been characterized by 16S rRNA gene sequence
analysis of isolated cultures and analysis of 16S rDNA clone
libraries obtained from DNA extracted from soil (22, 23). The
aims of this study were to compare cloning and fingerprinting
approaches and to exploit the potential for greater replication
and quantification provided by DGGE analysis to assess dif-
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ferences between bacterial communities in these soils. Three
grassland types were compared by using DGGE, while unim-
proved and improved soils were compared by cloning.

MATERIALS AND METHODS

Soil samples from three characteristic grassland types, designated unimproved,
semi-improved, and improved, were collected from Sourhope Research Station
in the Borders Region, Scotland, as part of the Scottish Executive Rural Affairs
Department MICRONET program (http://www.scri.sari.ac.uk/MICRONET/De-
fault.html). The unimproved site was classified as a Festuca ovina-Agrostis cap-
illaris-Galium saxatile grassland, while the semi-improved grassland also had a
Holcus lanatus-Trifolium repens subcommunity. Neither of these grasslands had
received fertilizer treatments, and both had been grazed by sheep throughout the
year. The improved grassland, classified as a Lolium perenne-Cynosurus cristatus
grassland, was fertilized three times per year and had also been grazed by sheep.
The improved grassland was originally unimproved grassland that was cultivated
and seeded with a L. perenne-T. repens mixture in 1982. The soil physicochemical
conditions, a detailed vegetation analysis, and sampling of this site have been
reported elsewhere (6, 22).

Total soil DNA was extracted by C. D. Clegg (Scottish Crop Research Insti-
tute, Invergowrie, United Kingdom) by freeze-thawing (5), and PCR amplifica-
tion of 16S rRNA genes for cloning and sequence analysis was carried out with
primers Bf and 1390r, as described by McCaig et al. (22). Products for DGGE
analysis were amplified with primers p3 and p2 (25), which amplify a 194-bp
fragment of the 16S rRNA gene, including the variable V3 region, and include a
40-bp GC clamp at the 5� end of p3. Amplification reactions were performed as
described previously for primers Bf and 1390r, except that Taq polymerase was
obtained from Bioline, London, United Kingdom, and the cycling parameters for
amplification were as follows: 95°C for 5 min, followed by 10 cycles of 94°C for
30 s, 55°C for 30 s, and 72°C for 30 s, 25 cycles of 92°C for 30 s (95°C is not
necessary to denature �200-bp products and the lower temperature preserves
enzyme activity), 55°C for 30 s, and 72°C for 45 s, and a final incubation at 72°C
for 10 min. Construction of clone libraries and analysis of 275 16S rDNA clones
were performed as described by McCaig et al. (22). Clone data were used to
calculate richness, the Shannon diversity index, evenness, and dominance (22),
and clones with �97% sequence similarity were clustered into operational tax-
onomic units (OTUs).

Products obtained with the DGGE primers were purified by adding 10 �l of
phenol and 10 �l of chloroform-isoamyl alcohol (24:1); to remove bovine serum
albumin, the tubes were briefly vortexed and centrifuged at 10,000 � g for 5 min,
and aqueous layers were transferred into clean tubes. DGGE analysis was carried
out with the DCode universal mutation detection system (Bio-Rad). Polyacryl-
amide gels (8% Acrylogel 2.6 solution; BDH Laboratory Supplies, Poole, United
Kingdom) with a 40% (2.8 M urea–16% [vol/vol] formamide) to 60% (4.2 M
urea–24% [vol/vol] formamide) vertical denaturing gradient were poured by
using a gradient former (Fisher Scientific UK, Loughborough, United Kingdom)
and a peristaltic pump (5 ml min�1). Gels were poured onto the hydrophilic side
of Gelbond PAG film (FMC BioProducts, Rockland, Maine) that was hydro-
phobically bonded to the small glass plate, in order to facilitate handling of gels
during staining procedures. Approximately 50 ng of each PCR product was
loaded, and the gels were electrophoresed for 16 h at 75 V and 60°C. The gels
were fixed overnight (10% ethanol, 0.5% glacial acetic acid, 89.5% H2O) prior to
silver staining and were then incubated with shaking in freshly prepared staining
solution (0.2% [wt/vol]) silver nitrate) for 20 min; this was followed by incubation
in fresh developing solution (0.1 mg of sodium borohydride ml�1 in 1.5% [wt/vol]
NaOH–0.4% [vol/vol] formaldehyde) until bands appeared. The gels were then
fixed for 10 min in 0.75% (wt/vol) Na2CO3, preserved in ethanol-glycerol pre-
servative (25% ethanol, 10% glycerol, 65% H2O) for at least 15 min, and stored
in sealed plastic bags. The gels were scanned (GT-9600 scanner; Epson UK,
Hemel Hempstead, United Kingdom) by using Presto! PageManager for Epson
software (version 4.00.01; NewSoft Technology Corp., Fremont, Calif.). Phoretix
one-dimensional gel analysis software (version 4.00; Phoretix International, New-
castle upon Tyne, United Kingdom) was used to determine the intensity and
relative position of each band compared to a composite lane, created by the
software, of all sample lanes. To correct for variations in DNA loading between
lanes, the total band intensity for each lane was normalized to that of the lane
with the lowest DNA loading. The faintest band on the gel prior to this normal-
ization was assumed to be at the limit of detection, and all bands below this band
were ignored. The intensity of each band was then calculated by determining the
proportion of the total band intensity in a particular lane, and the resulting
normalized data (weighted data), along with a simple binary matrix describing

the presence and absence of bands at each position (unweighted data), were used
in subsequent analyses.

DGGE banding data were used to estimate the four diversity indices calcu-
lated from the cloning data by treating each band as an individual OTU and using
the number of bands as an indicator of richness. The Shannon diversity index,
evenness, and dominance (29, 32, 33) were calculated from the number of bands
present and the relative intensities of the bands in each lane. Similarity coeffi-
cients for pairwise comparisons of DGGE gel lanes were calculated from both
unweighted and weighted data. The unweighted data were treated in two ways.
First, a band-matching coefficient was calculated by using the approach described
above for the clone data, in order to allow direct comparison of the strategies.
The similarity matrix obtained was designated unweighted matrix 1 (UM1). In
contrast to this approach, in which similarity was assessed on the basis of match-
ing only OTUs, a second approach (unweighted matrix 2 [UM2]) was adopted,
in which the presence or the absence of bands at the same position in two lanes
was considered a band match. In this case, therefore, similarity values were
calculated by SAB � MAB/N, where MAB is the number of matches (i.e., the
number of bands present or absent in both lane A and lane B for each possible
band position) and N is the number of band positions (i.e., the number of bands
in the composite lane). Using the intensity data, each band was weighted ac-
cording to the magnitude of the difference in the relative intensities of the bands
at the same position in two lanes. This procedure was carried out by using
positions where a match was assigned if one or both lanes contained a band
(weighted matrix 1 [WM1]) and where absence in both lanes was also considered
a match (weighted matrix 2 [WM2]). Paired band weights (WABi

) were calculated
by:

WABi �1�� 	
VAi � VBi�/
VAi � VBi��
2

where VAi
and VBi

are the relative intensities of the ith bands in samples A and
B, respectively, for positions where VAi

� VBi
 0. When VAi

� VBi
, then WABi

� 0 for WM1 and WABi
� 1 for WM2. Similarity was then calculated by:

SAB ��
i�1

N

WABi/N

For WM1, N is the number of positions at which a band occurs in one or both
lanes (i.e., analogous to UM1). For WM2, N is the total number of band
positions (i.e., analogous to UM2). Principal-coordinate analysis was carried out
for UM1, UM2, WM1, and WM2 by using Genstat for Windows, 4th ed. (The
Numerical Algorithms Group Ltd., Oxford, United Kingdom). Multivariate anal-
ysis was also carried out directly with the original unweighted and weighted data
by first reducing the data to six principal components and then performing
canonical variate analysis (CVA) using Genstat for Windows. Sample groupings
were specified prior to the CVA; i.e., for this study data were grouped as
unimproved, semi-improved, and improved. CVA finds linear combinations of
variates that maximize the ratio of between-group variation to within-group
variation. In order to test the validity of this approach, data were randomly
grouped into three sets of triplicates prior to CVA.

RESULTS

Samples from triplicate unimproved and improved grassland
plots were compared directly by sequencing 16S rDNA clones
or by DGGE, and an additional three samples from an inter-
mediate, semi-improved grassland were analyzed only by
DGGE. Grassland-specific patterns could not be detected by
visual comparison of DGGE profiles (Fig. 1), although specific
patterns may have been masked by small variations between
replicate samples that were evident, particularly in the unim-
proved grassland sample lanes. The estimates of richness from
the clone data (37.8 to 42.0 and 37.3 to 41.0 for unimproved
and improved soils, respectively) were generally close to the
number of clones sequenced (45 to 48) due to the low library
coverage achieved (7 to 16%) (22) and were not significantly
different for improved and unimproved grassland samples.
Richness was assessed by determining the number of DGGE
bands detected after correction for differences in DNA loading
(the mean values were 44.7, 39.0, and 42.0 for unimproved,
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semi-improved, and improved plots, respectively) and was sig-
nificantly greater in unimproved grassland samples than in
semi-improved grassland samples (P � 0.055, as determined by
Student’s t test). After DGGE data were pooled, both un-
improved and improved grassland samples showed greater
richness than semi-improved grassland samples (77 bands for
unimproved and improved grassland samples, 65 bands for
semi-improved grassland samples). For all but one sample, the
number of DGGE bands exceeded the number of clone types
(37 to 42 clone types and 38 to 46 DGGE bands in unimproved
and improved grassland samples), but there were more clone
types after data were pooled (�113 clone types, compared to
77 DGGE bands). This is probably explained by the limited
resolution of DGGE and the probability that single bands from
a complex bacterial PCR product comprise more than one
OTU.

The Shannon diversity index, evenness, and dominance val-
ues calculated by using either clone libraries or DGGE profiles
did not differ significantly for the different grassland types. For
both approaches, however, there was considerable variation

within triplicate samples, making treatment differences difficult
to detect. A slight decrease in evenness was observed for
pooled DGGE data with improved grassland samples com-
pared to unimproved grassland samples (0.890 to 0.879),
which, given the similar values for richness for these grass-
lands, may have led to the slight decrease in the Shannon
diversity index (1.68 to 1.66). Similarly, the dominance values
for pooled DGGE data were slightly higher for improved
grassland samples than for unimproved grassland samples
(0.033 compared to 0.029), although both of the differences
were small. The clone data showed a similar trend, although to
a lesser extent. DGGE analysis of semi-improved grassland
samples revealed a very different bacterial community struc-
ture than both unimproved and improved grasslands, as re-
flected by lower values for the Shannon diversity index (1.58,
1.66, and 1.68 for semi-improved, unimproved, and improved
grassland samples, respectively), richness (65, 77, and 77, re-
spectively), and evenness (0.869, 0.890, and 0.879, respectively)
and a higher dominance value (0.038, 0.029, and 0.033, respec-
tively). However, while semi-improved grassland samples had
significantly lower richness values than unimproved grassland
samples (P � 0.055), no other comparisons were statistically
significant.

The similarity coefficients were considerably higher for
DGGE profiles than for clone libraries and had an approxi-
mately 10-fold-greater range of values on average (0.53 com-
pared to 0.06). This is because very few OTUs were found in
more than one library due to the low coverage; thus, these data
are probably not a true reflection of the similarity between
grasslands. For DGGE of semi-improved grassland samples,
the within-group similarity was greater than the similarity be-
tween semi-improved and improved grassland samples (0.58
compared to 0.53; P � 0.12, as determined by Student’s t test.
This reduced within-group variability may also be partially
responsible for the lower Shannon diversity index, evenness,
and richness values and greater dominance values for the semi-
improved grassland samples compared to the values for the
samples from the other two grasslands. The within-group sim-
ilarities for the other grasslands, however, were comparable to
the between-group similarities. This may have been due to a
combination of low numbers of replicates and high spatial
variation, and it is possible, therefore, that analysis of a higher
number of replicate samples may allow better discrimination
between grasslands. Analysis of similarity matrices prepared
from weighted (WM1 and WM2) and unweighted (UM1 and
UM2) DGGE data by principal-coordinate analysis (Fig. 2) did
not distinguish the three grassland types; i.e., no grassland-
dependent clustering was observed, although PC1 and PC2
represented only 17 to 18 and 15 to 16% of the variation,
respectively. No clear pattern of clustering was observed, and
in general, the position of points relative to each other re-
mained consistent regardless of the type of analysis. A high
degree of similarity between two of the semi-improved grass-
land samples, SH1 and SH2, was also seen throughout, reflect-
ing the low within-group variation observed in this group. Den-
drograms also showed that there was a high level of similarity
between these two samples, but the relationship between other
samples varied depending upon the algorithm used (data not
shown), indicating that there was a lack of support for differ-
ences between grasslands. Neither weighting data nor the

FIG. 1. DGGE analysis of 16S rRNA genes amplified from DNA
extracted from replicate samples (lanes 1, 2, and 3) of unimproved,
semi-improved, and improved grassland soils using eubacterial primers
(25).
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method of calculating similarity matrices affected the outcome
of the analysis. Similarly, using the squares of the weights
calculated for WM1 and WM2, thereby emphasizing large dif-
ferences in intensity, did not affect the outcome of the analysis
(data not shown).

CVA of both original sets of data (i.e., binary matrix and
intensity data) clearly separated the three grasslands (Fig. 3a
and b, respectively), particularly for the unweighted data, and
CV1 accounted for 99.9 and 96.5% of the variation. The band
loadings indicated that many bands were cumulatively respon-
sible for the separation of the groups and that, in general,
different bands were responsible for the separation in the un-
weighted and weighted data. If this separation were due to the
statistical approach used rather than to real differences be-
tween the sample types, then the clustering into three assigned
groups would be expected regardless of how the data were
grouped. Separation was not observed when the three assigned
groups contained a single replicate from each grassland (Fig.
3c and d) but was observed when each group contained two
replicates from one grassland and a single replicate from an-
other grassland (Fig. 3e and f). In conclusion, therefore, CVA
of the DGGE data did discriminate among the three grassland
types.

DISCUSSION

The hypothesis that was tested by comparison of the three
vegetation types and management regimens was that high nu-
trient input and lower plant diversity in improved grasslands
lead to a less diverse bacterial community than the community
in unimproved grasslands, with the semi-improved grassland

community being intermediate. Analysis of diversity indices
and similarity coefficients for clone data indicated that there
was no difference between unimproved and improved grass-
lands. While this finding can also be attributed to poor cover-
age of libraries (22), spatial variation of triplicate plots may
have concealed differences between grasslands, and similar
approaches have demonstrated that there are differences in
ammonia oxidizer populations in sediment and soil (35) and in
communities located at different distances from plant roots
(21). Variation was also observed in DGGE profiles of tripli-
cate samples from all three grassland types, but despite this,
quantification of diversity and multivariate analysis of DGGE
banding data did reveal differences in community structure
among the three grassland types. Diversity, as calculated from
pooled DGGE data, was lower in improved grassland samples
than in unimproved grassland samples due to a decrease in

FIG. 2. Principal-coordinate analyses of similarity matrices pro-
duced from unweighted and weighted DGGE banding data from trip-
licate samples of three grassland soils. Calculation of matrices is de-
scribed in Materials and Methods. (a) UM1; (b) UM2; (c) WM1; (d)
WM2. PC1 represents 18.5, 18.2, 16.7, and 17.3% of the variation for
panels a to d, respectively, and PC2 represents 16.0, 16.5, 15.2, and
15.1% of the variation for panels a to d, respectively. The consistency
of clustering of samples SH1 and SH2, as described in the text, is
indicated.

FIG. 3. Ordination of canonical variates (CV1 and CV2) produced
from multivariate analysis of DGGE banding data from triplicate sam-
ples of three grassland soils. (a, c, and e) Analysis of an unweighted
matrix; (b, d, and f) analysis of the corresponding weighted data.
Panels a and b show the true grouping of the original data into unim-
proved, semi-improved, and improved soils, while panels c to f show
analysis of data that were randomly grouped prior to analysis (see
Materials and Methods). The points on all graphs indicate the grass-
land types, and the three random groups of data for each set are circled
in panels a to d and f; in panel e only two sets of data are clearly
marked. CV1 accounts for 99.9, 96.5, 73.9, 89.2, 94.0, and 98.2% of the
variation in panels a to f, respectively, and CV2 accounts for 0.1, 3.5,
26.1, 10.8, 6.0, and 1.8% of the variation, respectively.
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evenness, possibly because of selection for particular bacteria.
CVA also provided evidence that the communities were dif-
ferent, but the complexity of the DGGE data prevented iden-
tification of distinguishing bands. Similarity indices indicated
that semi-improved grassland samples were more similar to
improved grassland samples than to unimproved grassland
samples, suggesting that there is some progression of bacterial
communities during soil improvement. This hypothesis was
supported by community DNA cross-hybridization analysis but
not by CVA of the same samples (7), although the variation
between DNA melting profiles was significant for semi-im-
proved grassland replicates, while diversity and variability were
considerably lower in the semi-improved grasslands than in the
other two grasslands. DNA hybridization, however, analyzes
both prokaryotic DNA and eukaryotic DNA.

The differences between sequence analysis of randomly se-
lected clones and DGGE analysis may have been due to the
use of different primer sets for amplifying products for cloning
and DGGE, although the same region of the 16S rDNA (i.e.,
the V3 region) was compared in both approaches. While more
than 100 clone types were obtained from each grassland, only
65 to 77 bands were detected by DGGE, demonstrating the
lower resolution of this method. Furthermore, clones were
grouped into OTUs when �97% similarity was observed, while
DGGE can potentially separate sequences with only one base
difference (i.e., �99% similarity). If the clone libraries in this
study were also assessed at this stringent level, the number of
OTUs rose to �130, emphasizing the restricted resolution of
DGGE gels. As with cloning, only the more abundant se-
quences are generally detected by DGGE, although selection
of low-abundance sequences by chance may occur with cloning,
while DGGE is constrained by resolution and detection limits
of staining. In addition, comigration of different sequences to
the same gel position reduces the observed number of bands,
and smears may comprise several bands. Nevertheless, DGGE
analysis was more discriminatory and more rapid and is a
relatively inexpensive method for providing broad qualitative
and quantitative comparisons of large numbers of samples.

Although quantification of DGGE data is possible, care
should be taken in interpreting results. Most analyses per-
formed to date have been done on simple communities, in-
cluding ammonia oxidizer communities, (24, 36), maize fer-
mentations (1), wastewater reactors (18), relatively simple
fermentation reactors, and activated sludge (1, 2, 9). Analysis
of more complex soil communities is less common, although
cluster analyses have been carried out by construction of sim-
ilarity matrices (generally unweighted), followed by construc-
tion of dendrograms (8, 10, 14). This is comparable to the
principal-coordinate analyses performed in this study, but the
output is presented in a different format. In our study, princi-
pal-coordinate analysis did not discriminate between popula-
tions in different grasslands. Similarly, while Juck et al. (14)
observed discrimination between soils from different geo-
graphical locations, unpolluted and polluted soils from the
same location could not be separated. In contrast, Duineveld
et al. (8) used cluster analysis to distinguish between 16S rRNA
and rDNA profiles and between chrysanthemum root tip and
root base rDNA populations at four different time points.
Correspondence analysis was also used by Yang and Crowley
(38) to demonstrate the effect of plant iron nutrient status on

the bacterial community in the barley rhizosphere. Variation
was reduced in both rhizosphere experiments described above
through the use of mesocosms containing homogenized soil
and uniform growth conditions, thus emphasizing any treat-
ment effect, and the great spatial variation observed in our
replicates may have masked changes due to differences in ag-
ricultural practice. No difference was observed between anal-
ysis results for similarity matrices when weighted or un-
weighted data were used, possibly due to the high degree of
evenness for all samples, which resulted in approximately equal
weights for all bands. CVA was more sensitive and discrimi-
nated among the populations in the three grassland types de-
spite spatial variation, and interestingly, greater separation of
populations was observed when the unweighted data were
used. While the other methods reduced the complex banding
patterns to small, relatively simple numbers, representing ei-
ther a single lane (i.e., diversity indices) or a comparison be-
tween two lanes (i.e., similarity coefficients), this more sophis-
ticated approach looked at the overall patterns of variation
across all of the data, determining the influence of individual
bands in the separation of samples, and was able to detect
subtle differences which the other methods could not detect.
Additionally, CVA is a subjective statistical method that is
designed to maximize between-group differences, although in
this study randomization of DGGE data demonstrated that
statistical separation of groups did represent inherent differ-
ences between profiles for the three grasslands. Multivariate
approaches, therefore, may be useful in future studies in which
complex patterns are produced and in which subtle changes in
community structure are expected. In conclusion, quantifica-
tion and multivariate analysis of DGGE banding patterns en-
abled distinction between bacterial communities from three
grassland types, whereas cloning and sequence analysis could
not do this. Sequence analysis was limited to �137 clones for
each grassland type, and it is likely that discrimination would
have been achieved if higher numbers of clones had been
screened. DGGE, however, has a significantly greater capacity
for routine and rapid analysis of multiple samples and, in
combination with other environmental data, provides a basis
for more comprehensive ecological studies.
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